Acetylene is a colorless, combustible gas with a distinctive odor. When acetylene is liquefied, compressed, heated, or mixed with air, it becomes highly explosive. As a result special precautions are required during its production and handling. The most common use of acetylene is as a raw material for the production of various organic chemicals including 1,4-butanediol, which is widely used in the preparation of polyurethane and polyester plastics. The second most common use is as the fuel component in oxy-acetylene welding and metal cutting. Some commercially useful acetylene compounds include acetylene black, which is used in certain dry-cell batteries, and acetylenic alcohols, which are used in the synthesis of vitamins.

By the late 1800s, a method had been developed for making acetylene by reacting calcium carbide with water. This generated a controlled flow of acetylene that could be combusted in air to produce a brilliant white light. Carbide lanterns were used by miners and carbide lamps were used for street illumination before the general availability of electric lights. In 1897, Georges Claude and A. Hess noted that acetylene gas could be safely stored by dissolving it in acetone. Nils Dalen used this new method in 1905 to develop long-burning, automated marine and railroad signal lights. In 1906, Dalen went on to develop an acetylene torch for welding and metal cutting.

Raw Materials

Acetylene is a hydrocarbon consisting of two carbon atoms and two hydrogen atoms. Its chemical symbol is C 2 H 2.For commercial purposes, acetylene can be made from several different raw materials depending on the process used.

Other processes use natural gas, which is mostly methane, or a petroleum-based hydrocarbon such as crude oil, naphtha, or bunker C oil as raw materials. Coal can also be used. These processes use high temperature to convert the raw materials into a wide variety of gases, including hydrogen, carbon monoxide, carbon dioxide, acetylene, and others. The chemical reaction for converting methane into acetylene and hydrogen may be written 2 CH 4 → C 2 H 2 + 3 H 2 . The other gases are the products of combustion with oxygen. In order to separate the acetylene, it is dissolved in a solvent such as water, anhydrous ammonia, chilled methanol, or acetone, or several other solvents depending on the process.

The Manufacturing Process

Acetylene may be generated by the chemical reaction between calcium carbide and water. This reaction produces a considerable amount of heat, which must be removed to prevent the acetylene gas from exploding. There are several variations of this process in which either calcium carbide is added to water or water is added to calcium carbide. Both of these variations are called wet processes because an excess amount of water is used to absorb the heat of the reaction. A third variation, called a dry process, uses only a limited amount of water, which then evaporates as it absorbs the heat. The first variation is most commonly used in the United States and is described below.

Thermal cracking process

Acetylene may also be generated by raising the temperature of various hydrocarbons to the point where their atomic bonds break, or crack, in what is known as a thermal cracking process. After the hydrocarbon atoms break apart, they can be made to rebond to form different materials than the original raw materials. This process is widely used to convert oil or natural gas to a variety of chemicals.

There are several variations of this process depending on the raw materials used and the method for raising the temperature. Some cracking processes use an electric arc to heat the raw materials, while others use a combustion chamber that burns part of the hydrocarbons to provide a flame. Some acetylene is generated as a coproduct of the steam cracking process used to make ethylene.

Storage and Handling

Because acetylene is highly explosive, it must be stored and handled with great care. When it is transported through pipelines, the pressure is kept very low and the length of the pipeline is very short. In most chemical production operations, the acetylene is transported only as far as an adjacent plant, or "over the fence" as they say in the chemical processing business.

When acetylene must be pressurized and stored for use in oxy-acetylene welding and metal cutting operations, special storage cylinders are used. The cylinders are filled with an absorbent material, like diatomaceous earth, and a small amount of acetone. The acetylene is pumped into the cylinders at a pressure of about 300 psi (2,070 kPa), where it is dissolved in the acetone. Once dissolved, it loses its explosive capability, making it safe to transport. When the cylinder valve is opened, the pressure drop causes some of the acetylene to vaporize into gas again and flow through the connecting hose to the welding or cutting torch.

Quality Control

Grade B acetylene may have a maximum of 2% impurities and is generally used for oxyacetylene welding and metal cutting. Acetylene produced by the chemical reaction process meets this standard. Grade A acetylene may have no more than 0.5% impurities and is generally used for chemical production processes. Acetylene produced by the thermal cracking process may meet this standard or may require further purification, depending on the specific process and raw materials.